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0.1 The variational method

The approximation method that we will introduce goes by several different names, but it
is a minimizing movement that is intimately related to the method of Rothe. It is often
referred to as the discrete Morse flow (DMF), or as a minimizing movement (MM).

We will thus describe the method of Rothe as applied to the heat equation and then
discuss discrete gradient descents. Finally we will introduce the DMF.

0.2 The method of Rothe

Suppose we want to find a solution to the heat equation:
ut = ∆u + f(t, x) in (0, T ) × Ω,

u|∂Ω = g(t, x)

u(0, x) = u0(x) in Ω.

(1)

where Ω is a domain in Rd, T > 0 is a final time, and f(t, x) ∈ C(Ω̄T ) is a given
source term and g is the boundary data. The method of Rothe takes the position of
approximating solutions to (1) by discretizing time and then looking at the solution to
time-local approximations of (1).

For the sake of simplicity, let us assume that g(t, x) = 0 and let u0 be a given function
from H1

0 (Ω)). Further, let h = T/M denote a discretized time step, for some integer
M > 1. Then, leaving the space variable continuous, consider approximating the time-
local evolution by the solution to the following elliptic problem:{

u−u0

h
= ∆u + f(h, x) in Ω,

u|∂Ω = 0.
(2)

By standard elliptic theory there exists a unique solution to the above, which we denote
by u1. Then, in the same way as for u0, we can thus build a sequence of functions {un}M

n=0

such that each un (n ≥ 1) is the solution of a corresponding elliptic problem:{
u−un−1

h
= ∆u + f(nh, x) in Ω,

u|∂Ω = 0.
(3)

In particular, for any φ ∈ H1
0 (Ω), each member of the sequence of functions satisfies∫

Ω

un − un−1

h
φ + ∇un∇φdx =

∫
Ω

f(nh, x)φdx. (4)

Solutions to the elliptic problems can then be interpolated in time to obtain an approxi-
mate solution to the original problem on all of ΩT .

For each k = 1, 2, ...,M one defines χk to be the characteristic function of the time
interval [(k − 1)h, kh):

χk(t) =

{
1 if t ∈ [(k − 1)h, kh),

0 otherwise.
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A piecewise linear time interpolation with parameter h is then defined by

uh(t, x) =
M∑

k=1

χk(t)

[(
t − (k − 1)h

h

)
uk(x) +

(
kh − t

h

)
uk−1(x)

]
,

and a piecewise constant step function by (see figure 1):

ūh(t, x) =
M∑

k=1

χk(t)uk(x).

Ω t

u h (t, x) un (x)
un+1(x)

Ω t

uh (t, x)

Figure 1: Piecewise constant ūh (left) and piecewise linear uh (right).

For the discretized source term considered here, we write

f̄h(t, x) =
M∑

k=1

χk(t)f(kh, x). (5)

Then for any t ∈ (0, T ) and φ ∈ H1
0 (Ω), one has∫

Ω

(
uh

t φ + ∇ūh∇φ
)
dx =

∫
Ω

f̄h(t, x)φdx. (6)

By taking φ(x) = un − un−1 in (4) and summing from n = 0 to M , one readily obtains
the following estimates: ∣∣∣∣uh

t

∣∣∣∣2
L2(ΩT )

≤ ||∇u0||2L2(Ω) +
∣∣∣∣f̄h

∣∣∣∣2
L2(ΩT )∣∣∣∣∇uh

∣∣∣∣2
L2(ΩT )

≤ C(||∇u0||2L2(Ω) +
∣∣∣∣f̄h

∣∣∣∣2
L2(ΩT )

)∣∣∣∣ūh − uh
∣∣∣∣2

L2(ΩT
≤h2(||∇u0||2L2(Ω) +

∣∣∣∣f̄h
∣∣∣∣2

L2(ΩT )
),

where C is a constant that is independent of h. The assumption that the source function
belongs to C(Ω̄T ) implies that f̄h converges to f in L2(ΩT ). Therefore,

lim
h↓0

∣∣∣∣f̄h
∣∣∣∣2

L2(ΩT )
= ||f ||2L2(ΩT ) . (7)
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In particular, one has that {uh} is bounded in W 1,2(ΩT ), so that there exists a function

u ∈ W 1,2(ΩT ) and a subsequence {uhj} such that uhj converges to u, and u
hj

t and ∇uhj con-
verge weakly to ut and ∇u, respectively, in L2(ΩT ). Moreover, one has u ∈ W 1,2

0 ([0, T )×Ω)
and that the trace of u(0, x) equals u0 almost everywhere.

One extends the test functions to time-dependent domains and integrates (6) in time.
Then for any φ ∈ C∞

0 ([0, T ) × Ω), the following holds:∫ T

0

∫
Ω

(
uh

t φ + ∇ūh∇φ
)
dxdt =

∫ T

0

∫
Ω

f̄hφdxdt. (8)

Using the convergence information and the fact that u ∈ W 1,2
0 ([0, T ) × Ω), one is thus

able to obtain a weak solution to the original problem, as h goes to zero:∫ T

0

∫
Ω

(utφ + ∇u∇φ) dxdt =

∫ T

0

∫
Ω

fφdxdt. (∀φ(t, x) ∈ C∞
0 ([0, T ) × Ω)).

0.2.1 Time-discrete gradient descents

The method just described can also be interpreted as a time-discretized gradient descent
of an energy functional. We will now describe this relationship and introduce the discrete
Morse flow.

Let E(u) denote the Dirichlet integral of a function u ∈ H1
0 (Ω):

E(u) =

∫
Ω

|∇u|2

2
dx. (9)

Parallel to the finite dimensional case, the gradient of this energy at a location u in L2(Ω)
is defined as the function G such that,

d

dt
E(u) = (G, ut)L2 . (10)

We compute:

d

dt
E(u) =

1

2

∫
Ω

d

dt
∇u · ∇udx

=

∫
Ω

∇ut · ∇udx

=

∫
∂Ω

ut∇u · νdS −
∫

Ω

ut∆udx

=(−∆u, ut)L2 , (11)

where we have assumed that u is subject to Dirichlet boundary conditions. Thus we see
that the gradient of the Dirichlet integral at u in L2 is the minus Laplacian:

∇E(u) = −∆u.



5

Now let u0 be a given function, and consider a time-discrete approximation of the gradient
descent (in L2) of E(u):

u =u0 − h∇E(u0)

=u0 + h∆u0.

Which is equivalent to

u − u0

h
= ∆u0. (12)

By formally decreasing h to zero we have:

ut = ∆u,

which is often interpreted as saying that “the gradient descent of the Dirichlet integral is
the heat equation.”

Comparing the descent (12) to that of (2), we see that the method of Rothe can be
interpreted as a time-discrete gradient descent of the Dirichlet integral. With this in
mind, we now discuss the idea behind the DMF.

0.2.2 The discrete Morse flow

Parallel to the method of Rothe, let h = T/M denote a time discretization. For each
n = 1, ..., M , we consider the minimization of a functional Fn(u), defined over H1

0 (Ω):

Fn(u) =

∫
Ω

(
|u − un−1|2

2h
+

|∇u|2

2
− f(hn, x)u

)
dx. (13)

By computing the first variation of Fn(u):

d

dε
Fn(u + εφ)|ε=0 = 0, (14)

we deduce an expression for a weak solution to the elliptic problem (3):∫
Ω

u − un−1

h
φ + ∇u∇φdx =

∫
Ω

f(nh, x)φdx.

The existence of unique minimizers for each Fn(u) can be shown by the direct method.
The weak lower semicontinuity of the functionals, together with the boundedness of min-
imizing sequences constitute the significant points of the proof.

We then proceed as in the method of Rothe. By constructing a sequence of func-
tions {un}∞n=0, each the unique minimizer of a functional Fn(u) (n ≥ 1), we are able
to approximate the evolution by (1) at discrete times t = 0, h, 2h, ...,Mh. Interpolating
the minimizers in time and estimating the approximate solution allows one to take the
interpolation parameter to zero to obtain a solution to the original problem.
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Of course, once one has shown the existence and uniqueness of minimizers, the solu-
tions obtained both methods are equivalent. Nevertheless, the variational nature of the
DMF has a few distinct advantages.

The first is that the minimization aspect imparts the DMF’s numerical method with
strong stability properties, and another is that it allows one to easily consider constrained
evolutions (by penalization, or by explicitly restricting the admissible function set for
the minimizations). Finally, computations for problems involving free boundaries can
be addressed in a relatively straightforward manner. In particular, the minimizations
automatically determine the location of the free boundaries as well as the solution to the
target problem.

0.3 Numerical Implementation of the DMF

We will give the details for using the DMF as a numerical method. The calculations
corresponding to the DMF will assume the case d = 3 (that is, Ω ⊂ R3, as the lower
dimensional derivations can also be understood from this approach.

0.4 Volume coordinates

In this section, we derive formulae for computing functional values under the P1 finite
element assumptions. We assume that a domain Ω ⊂ Rd has been partitioned into a finite
number of elements. This can be done in any number of ways, but Delaunay triangulations
are the most common. This method takes a finite collection of points from within the
domain and then creates a corresponding triangulation (a graph). See figure 2 for an
illustration of this process.

Let us now describe the finite element approximation of our functions.

Ω

Figure 2: (Left) The domain Ω. (Center) Points in the domain. (Right) The triangulation.

To this end, let K −1 denote the dimension of vector u and e be the tetrahedron with
vertices located at xi = (xi, yi, zi), i = 1, ..., 4 (see figure 3).

The P1 assumptions imply that each coordinate of the vector field u can be written
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e
x1

x2

x3

x4

u1
u2

u3

u4

Figure 3: A tetrahedral element with it vertices and vectors.

as follows, over an arbitrary tetrahedron:
uk

1

uk
2

uk
3

uk
4

 =


x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1
x4 y4 z4 1




αk

βk

γk

ζk

 (k = 1, ..., K − 1), (15)

where uk
i denotes the kth element of the vector field u at location (xi, yi, zi). Further, let

D denote the following determinant:

D =

∣∣∣∣∣∣∣∣
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1
x4 y4 z4 1

∣∣∣∣∣∣∣∣ . (16)

Cramer’s rule allows one to express the coefficients in (15) in the following way:

Dαk =

∣∣∣∣∣∣∣∣
uk

1 y1 z1 1
uk

2 y2 z2 1
uk

3 y3 z3 1
uk

4 y4 z4 1

∣∣∣∣∣∣∣∣ Dβk =

∣∣∣∣∣∣∣∣
x1 uk

1 z1 1
x2 uk

2 z2 1
x3 uk

3 z3 1
x4 uk

4 z4 1

∣∣∣∣∣∣∣∣ (17)

Dγk =

∣∣∣∣∣∣∣∣
x1 y1 uk

1 1
x2 y2 uk

2 1
x3 y3 uk

3 1
x4 y4 uk

4 1

∣∣∣∣∣∣∣∣ Dζk =

∣∣∣∣∣∣∣∣
x1 y1 z1 uk

1

x2 y2 z2 uk
2

x3 y3 z3 uk
3

x4 y4 z4 uk
4

∣∣∣∣∣∣∣∣ . (18)

We now change to the so-called volume coordinates by inverting the matrix on the right
hand side of (15) to write:

αk
1

βk
1

γk
1

ζk
1

 =


a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4




uk
1

uk
2

uk
3

uk
4

 . (19)
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We compute αk:

Dαk = uk
1

∣∣∣∣∣∣
y2 z2 1
y3 z3 1
y4 z4 1

∣∣∣∣∣∣− uk
2

∣∣∣∣∣∣
y1 z1 1
y3 z3 1
y4 z4 1

∣∣∣∣∣∣+ uk
3

∣∣∣∣∣∣
y1 z1 1
y2 z2 1
y4 z4 1

∣∣∣∣∣∣− uk
4

∣∣∣∣∣∣
y1 z1 1
y2 z2 1
y3 z3 1

∣∣∣∣∣∣
= −(uk

4 (y1(z2 − z3) − y2(z1 − z3) + y3(z1 − z2))

−uk
3 (y1(z2 − z4) − y2(z1 − z4) + y4(z1 − z2))

+uk
2 (y1(z3 − z4) − y3(z1 − z4) + y4(z1 − z3))

−uk
1 (y2(z3 − z4) − y3(z2 − z4) + y4(z2 − z3)))

=: −(uk
4a1 − uk

3a2 + uk
2a3 − uk

1a4). (20)

Similarly, for βk, γk, and ζk, we have

Dβk = −(uk
4 (x1(z2 − z3) − x2(z1 − z3) + x3(z1 − z2))

−uk
3 (x1(z2 − z4) − x2(z1 − z4) + x4(z1 − z2))

+uk
2 (x1(z3 − z4) − x3(z1 − z4) + x4(z1 − z3))

−uk
1 (x2(z3 − z4) − x3(z2 − z4) + x4(z2 − z3)))

=: −(uk
4b1 − uk

3b2 + uk
2b3 − uk

1b4), (21)

Dγk = −(uk
4 (x1(y2 − y3) − x2(y1 − y3) + x3(y1 − y2))

−uk
3 (x1(y2 − y4) − x2(y1 − y4) + x4(y1 − y2))

+uk
2 (x1(y3 − y4) − x3(y1 − y4) + x4(y1 − y3))

−uk
1 (x2(y3 − y4) − x3(y2 − y4) + x4(y2 − y3)))

=: −(uk
4c1 − uk

3c2 + uk
2c3 − uk

1c4), (22)

Dζk = −(uk
4 (x1(y2z3 − y3z2) − x2(y1z3 − y3z1) + x3(y1z2 − y2z1))

−uk
3 (x1(y2z4 − y4z2) − x2(y1z4 − y4z1) + x4(y1z2 − y2z1))

+uk
2 (x1(y3z4 − y4z3) − x3(y1z4 − y4z1) + x4(y1z3 − y3z1))

−uk
1 (x2(y3z4 − y4z3) − x3(y2z4 − y4z2) + x4(y2z3 − y3z2)))

=: −(uk
4d1 − uk

3d2 + uk
2d3 − uk

1d4). (23)

Over each tetrahedron, the vector field is written:

u(x, y, z) = ᾱx + β̄y + γ̄z + ζ̄ ,

where ᾱ, β̄, γ̄ and ζ̄ denote the vectors with coordinates αk, βk, γk and ζk, respectively.
Hence,

uk(x, y, z) =
4∑

i=1

(aix + biy + ciz + di) uk
i .
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Set λi = aix + biy + ciz + di, so that the above is expressed:

uk(x, y, z) =
4∑

i=1

λiu
k
i . (24)

Then

∂uk

∂x
=

4∑
i=1

aiu
k
i ,

∂uk

∂y
=

4∑
i=1

biu
k
i ,

∂uk

∂z
=

4∑
i=1

ciu
k
i . (25)

Now we can use the value of the well-known volume coordinates integral to compute the
value of our functionals:∫

e

λα
1 λβ

2λ
γ
3λ

δ
4dxdydz =

α!β!γ!δ!

(α + β + γ + δ + 3)!
6 |e| . (26)

Remark: In the two-dimensional case, the equivalent of the above is
as follows: ∫

e

λα
1 λβ

2λ
γ
3dxdy =

α!β!γ!

(α + β + γ + 2)!
2 |e| .

Let wk denote the value of a P1 function at the location k. Then we have

(w1λ1 + w2λ2 + w3λ3 + w4λ4)
2 =w2

1λ
2
1 + w2

2λ2 + w2
3λ

2
3 + w2

4λ
2
4

+2w1w2λ1λ2 + w1w3λ1λ3 + w1w4λ1λ4

+2w2w3λ1λ3 + w1w3λ1λ3 + w3w4λ3λ4

+2w2w4λ2λ4 + w1w4λ1λ4 + w3w4λ3λ4. (27)

By using (26) we compute the following values:

∫
e

λiλjdxdydz =

{
|e| /10 if i = j

|e| /20 otherwise.

Therefore the values of our functionals over a each element can be computed using the
following formula:∫

e

(w1λ1 + w2λ2 + w3λ3 + w4λ4)
2dxdydz (28)

=
|e|
10

(
w2

1 + w2
2 + w2

3 + w2
4 + w1w2 + w2w3 + w2w4 + w1w3 + w1w4 + w3w4

)
. (29)



10

For the Dirichlet integral, we have:∫
e

|∇w|2 dxdydz =

∫
e

K−1∑
i=1

∣∣∇wi
∣∣2 dxdydz

=

∫
e

K−1∑
i=1

∣∣∣∣∣∇
(

4∑
j=1

λjw
i
j

)∣∣∣∣∣
2

dxdydz

= |e|
K−1∑
i=1

( 4∑
j=1

wi
jaj

)2

+

(
4∑

j=1

wi
jbj

)2

+

(
4∑

j=1

wi
jcj

)2
 . (30)

Remark: It is important to realize that, for an arbitrary vector field, the above formulae
allow one to compute functional values in terms of the mesh geometry. In particular, one
needs compute the area and coefficients for each element only once. Then one can reuse
their information for any other candidate vector field, throughout the computations.

0.5 Computation of functional values

For the sake of clarity, we explicitly state the way of computing functional values for
vector-type discrete Morse flows, with Ω ⊂ R2.

The task is to find a vector field u ∈ H1
0 (Ω;RK−1) to minimize functionals of the

following type:

Fn(u) =

∫
Ω

(
|u − 2un−1 + un−2|2

2h2
+

|u − un−1|2

2h
+

|∇u|2

2

)
dx,

where h > 0 and un−1,un−2 are given.
Assuming the P1 finite element assumptions, over each element u has the following

form:

u1

u2
u3

ej

Figure 4: Vectors at the nodes of an element.

u(x, y) = ᾱx + β̄y + γ̄,
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where

ᾱ =


α1

α2
...

αK−1

 β̄ =


β1

β2
...

βK−1

 γ̄ =


γ1

γ2
...

γK−1

 . (31)

The finite element implementation of our functionals approximates the infinite dimen-
sional minimization problem by a finite dimensional (although the number of variables is
large) minimization:

Fn(u) ≈
M∑

j=1

∫
ej

(∣∣uj − 2uj
n−1 + uj

n−2

∣∣2
2h2

+

∣∣uj − uj
n−1

∣∣2
2h

+
|∇uj|2

2

)
dx (32)

=
M∑

j=1

∫
ej

K−1∑
i=1

(∣∣uj
i − 2uj

i,n−1 + uj
i,n−2

∣∣2
2h2

+

∣∣uj
i − uj

i,n−1

∣∣2
2h

+

∣∣∇uj
i

∣∣2
2

)
dx. (33)


